Beyond universality in random matrix theory
نویسندگان
چکیده
منابع مشابه
Beyond universality in random matrix theory
In order to have a better understanding of finite random matrices with non-Gaussian entries, we study the 1/N expansion of local eigenvalue statistics in both the bulk and at the hard edge of the spectrum of random matrices. This gives valuable information about the smallest singular value not seen in universality laws. In particular, we show the dependence on the fourth moment (or the kurtosis...
متن کاملUniversality in Random Matrix Theory
which is the Central Limit Theorem. In principle, all the random variables X1, X2, · · · , XN can be of order 1, hence SN ∼ 1 as well, but the probability of having such a rare event is incredibly small. We can even estimate the bound on the probability for the rare event from the large deviation principle. A similar phenomenon happens when we form a large matrix from i.i.d. random variables an...
متن کاملA Transportation Approach to Universality in Random Matrix Theory
In this note we discuss a new recent approach, based on transportation techniques, to obtain universality results in random matrix theory. Large random matrices appear in many different fields, including quantum mechanics, quantum chaos, telecommunications, finance, and statistics. As such, understanding how the asymptotic properties of the spectrum depend on the fine details of the model, in p...
متن کاملUniversality in Random Matrix Theory for Orthogonal and Symplectic Ensembles
Abstract. We give a proof of universality in the bulk for orthogonal (β = 1) and symplectic (β = 4) ensembles of random matrices in the scaling limit for a class of weights w(x) = e (x) where V is a polynomial, V (x) = κ2mx+· · · , κ2m > 0. For such weights the associated equilibrium measure is supported on a single interval. The precise statement of our results is given in Theorem 1.1 below. F...
متن کاملUniversality of the Distribution Functions of Random Matrix Theory
Statistical mechanical lattice models are called solvable if their associated Boltzmann weights satisfy the factorization or star-triangle equations of McGuire [1], Yang [2] and Baxter [3]. For such models the free energy per site and the one-point correlations in the thermodynamic limit are expressible in closed form [4]. There exists a deep mathematical structure [4, 5] underlying these solva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Applied Probability
سال: 2016
ISSN: 1050-5164
DOI: 10.1214/15-aap1129